digitalt på distans

Checklist for digital innovation

I projektet Digitala innovationsprocesser på distans (AKKE), finansierat av Österbottens förbund, har vi tillsammans med Vasa universitet undersökt upplevelser av att leda innovations- och utvecklingsarbete online eller i hybridform under pandemin.
Projektet omfattade 11 djupintervjuer med nyckelpersoner som leder innovations- och utvecklingsprocesser i regionen, en kartläggning av andra resurser och litteratur inom området, och en validering av resultaten genom att utvärdera pågående egna projekt.
Nu har vi resultaten: Checklistor på tre språk för hur man planerar, förverkligar och följer upp innovationsprocesser och samskapande online eller i hybridform. Vi hoppas att de ska vara till stöd i ert arbete, och vi vill gärna få feedback på dem.


Checklistorna hittar du här.

Checklista för digitala innovationsprocesser

Pohjanmaan liiton rahoittamassa Digitaaliset innovaatioprosessit etänä (AKKE) -hankkeessa olemme yhdessä Vaasan yliopiston kanssa selvittäneet kokemuksia innovaatio- ja kehitystyön johtamisesta pandemian aikana verkossa tai hybridimuodossa.
Hankkeeseen sisältyi 11 syvähaastattelua alueen innovaatio- ja kehitysprosesseja johtavien avainhenkilöiden kanssa, kartoitus alueen muista resursseista ja kirjallisuudesta sekä tulosten validointi arvioimalla käynnissä olevia omia hankkeitamme.
Nyt voimme jakaa tulokset: tarkistuslistat kolmella kielellä innovaatioprosessien suunnitteluun, toteuttamiseen ja seurantaan sekä yhteiskehittämiseen verkossa tai hybridimuodossa. Toivomme, että ne voivat tukea työskentelyäsi, ja kuulemme mielellämme palautetta niiistä.

Löydät tarkistuslistat täältä.
Tarkistuslista verkko ja hybridiprosesseihin


In the project Digital innovation processes (AKKE), funded by the Regional Council of Ostrobothnia, ÅAU Experience Lab and the University of Vaasa have investigated experiences of leading innovation and development work online or in hybrid form during the pandemic.
The project included 11 in-depth interviews with key people who lead innovation and development processes in the region, a survey of other resources and literature in the area, and a validation of the results by evaluating ongoing own projects.
Now we can share the results: Checklists in three languages for how to plan, implement and follow up innovation processes and co-creation online or in hybrid form. We hope they can support you in your work, and we would love to receive feedback on them.

You can find the checklists here.

Checklist for online innovation processes

Evaluating experiences of online co-creation

The first roll-out of our online co-creation evaluation projects was done at the IoTXchange network meeting in Razlog on April 29th. A combination of seven semi-structured interviews with project partners’ staff and an electronic survey to stakeholders yielded interesting results – first impressions on the experience of remote work and co-creation during the pandemic.

Overall, the feeling was that the forced transition had been a shock at first, but different ways and means to cope with the situation were found. The processes for creating integrated action plans were mostly hybrid in one way or another, and while the social interaction of physical meetings was missed, the participants were by and large satisfied with the results. In fact, the participants appeared to have a more positive experience than those responsible for the processes – which of course is a good result, but also may highlight the extra effort and strain that the arrangers have felt. All in all, there are still challenges to meet, but the outlook is promising.

The full results will be available by the time we meet again in Fundao in June, and a playbook with checklists for online co-creation and development, based on data from this project and two others with similar themes, will be available in August.

“En glad maskin” – erfarenheter av svenskspråkiga robotar i…

Välkommen att ta del av erfarenheter och reflektioner kring sociala robotar på svenska i vården tillsammans med Åbo Akademi/Experience Lab och Arcada.

Åbo Akademi/Experience Lab och Arcada har i drygt två års tid samarbetat kring projektet MäRI (Människa och Robot-Interaktion) som strävat efter att ta fram evidensbaserad kunskap kring hur vårdtagare och vårdstuderanden upplever mötet med en social, humanoid robot. Projektet finansieras av Svenska Kulturfonden.

ENG:

Welcome to explore experiences and reflections on social robots in healthcare in Swedish, together with Åbo Akademi/Experience Lab and Arcada.

For over two years, Åbo Akademi/Experience Lab and Arcada have collaborated on the MäRI project (Human and Robot Interaction) which aimed to develop evidence-based knowledge on how care recipients and healthcare students perceive interactions with a social humanoid robot. The project is funded by the Svenska Kulturfonden.

Den 11.5. 2022 berättar vi om arbetet i Märi på flera sätt – på förmiddagen håller vi ett livestreamat webinarium och på eftermiddagen ges du möjlighet att fysiskt bekanta dig med robotarna och den applikation som skapats. I Vasa kan du komma till Experience Lab och i Helsingfors till Arcada.

Dagen av avgiftsfri, men kräver anmälan.

Webinarium 11.5. kl 09.30-11 på YouTube, https://www.youtube.com/user/mediacityfinland

Program

Introduktion till samarbetsprojektet Märi -sociala robotar som agenter i vården

Presentation av robotarna och utvecklingsprocessen för att ta fram en applikation för tandvården

  • Flossa – en robotapplikation för tandvården

Mattias Wingren, Sören Andersson, Åbo Akademi/Experience Lab

Dennis Biström, Kristoffer Kuvaja Adolfsson, Johan Penttinen, Arcada

Erfarenheter och reflektioner från projektet

  • Upplevelser av att tala med en svenskspråkig robot – Susanne Hägglund, Åbo Akademi/Experience Lab
  • Hur kan roboten hjälpa? – Christa Tigerstedt, Arcada

Forskare och företagare Linda Mannila ger en kommentar till projektet

Moderator: Yvonne Backholm-Nyberg, verksamhetschef, Åbo Akademi/Experience Lab


Workshops 11.5 kl 13-15

Åbo Akademi/Experience Lab, Strandgatan 2, 65100 Vasa

I  Experience Lab kommer deltagarna att få träffa tre robotar, – Nao, Pepper och Furhat. Deltagarna får interagera med dem och utforska olika användningsfall  i vården för alla de här tre robotarna. 

Du kan välja att delta antingen kl 13-14 eller 14-15. Antalet platser är begränsat pga utrymmets beskaffenhet.

Arcada, Robolab, Jan-Magnus Janssons plats 1, 00550 Helsingfors

På Arcada får deltagarna testa på ‘robot whispering’ i praktiken. Detta betyder att man får insikter hur dessa plattformer fungerar och vad de kan erbjuda idag.  Deltagarna kommer att interagera med tre sociala robotar:  Alf, Snow och Amy.  Deltagarna kommer även att få testa vår FLOSSA applikation.

Du kan välja att delta antingen kl 13-14 eller 14-15. Antalet platser är begränsat pga utrymmets beskaffenhet.

Hela dagen är avgiftsfri, men kräver att du anmäler dig här:

Hulis jee me tu nö? (översatt från Malaxmål: hur…

Preliminära resultat från våra studier kring humanoida sociala robotar på svenska i vården visar att det är viktigt för en del österbottningar att robotarna kan förstå dialektala uttryck och att robotarna talar finlandssvenska. Dessvärre finns varken finlandssvenskan eller dialekter med bland de språk som det satsas stort på globalt i utvecklingen av taligenkänningsalgoritmer. I projekten MäRI och TaFiDiAi jobbar vi med att inkludera finlandssvenskar i processen att ta med svenskan i automatiseringen och robotiseringen. I det här inlägget skriver vår kollega Leonardo Espinosa Leal vid Arcada att det är det enda rätta att ta med minoritetsspråken i utvecklingen av interaktiva digitala tjänster, och det redan från start.

Inclusion in Human-Robot interaction 

Artificial intelligence has become the modern paradigm in almost all areas of knowledge. Significant advances in fields like deep neural networks (Goodfellow, 2016) have created algorithms able to rival humans in areas as never before, including vision (LeCun, 1995), language (Greff, 2016), and many others. Nowadays, machines are capable the defeating the human masters on almost any board game (Silver, 2018).  

Performing tasks at the human level means that somehow humans can be replaced or repurposed in less repetitive tasks. Ignoring philosophical or sociological discussions about how this technological revolution can impact, positively or negatively, the human population in the near or far future in general, it is clear that one of the goals of these advances is the creation of fully autonomous and intelligent embodied agents. 

The advances in robotics made by companies such as Boston Dynamics or SoftBank Robotics seem to bring the ancient dreams of creating artificial humanoids into reality. The secret source of these humanoid machines’ success is, apart from the advances in models, hardware, or software, done by highly skilled technical and theoretical experts, the endless homunculus amount of data generated by simple digital users.  

Yes, you muggle! In most cases, the human’s digital footprint has been responsible for creating and tagging data (sometimes on purpose, in others as a side subproduct of our web surfing). Data that have helped train these human-level deep learning algorithms. And here is where the problem arises. Powerful tech companies have expanded their services and products created with inherited inequalities within that data.  

The digital gap among different societies has allowed the creation of biased datasets. Modern estimations argue that more than half the global population has access to the internet; however, studies have shown that digital skills and access vary by region and gender. For instance, a 2019 study showed that 55% of men used the internet in the USA while only 48% of women did so. Moreover, only 44% of the population in the developing world and 20% of the people in the least developed world currently have internet access, in contrast to developed regions where over 85% of people have access. Similar inequalities can be found in other areas, such as age group, education level, and socioeconomic demographic information (Statista, 2019; Pew 2019).  

The landmark moment in the history of deep learning is the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) of 2012, won by Alex Krizhevsky (Krizhevsky, 2012). Here, GPU-powered Neural Networks enter the research sphere. ImageNet was an international contest where several research groups competed by bringing their best computer vision algorithms trying to reach the lowest classification error. ImageNet consists of 14,197,122 images organized into 21,841 subcategories. This dataset was compiled by Fei-Fei Li’s group at Stanford (Deng, 2009). This huge dataset has been the reference and the ground truth for new computer vision developments; however, it has been acknowledged recently that it contains flows and biases (Yang, 2020).  

Other specific fields use a limited number of standard datasets, for instance, in Indoor Scene Recognition (MIT Indoor Scenes or Stanford 3D Indoor Scene Dataset); Face recognition (WIDER Face or IMDb-Face); Autonomous driving (Waymo Open Dataset or Virtual KITTI ). A quick inspection will tell us how western-urban-male-centric biased are these datasets. I encourage the reader to check the site https://paperswithcode.com/dataset, just filter by language to see how English is the dominant language by far, compared to the second in the list. 

It is acknowledged that big tech players: GAMMAs (Google, Amazon, Meta (Facebook), Microsoft, Apple) or BATXs (Baidu, Alibaba, Tencent, and Xiaomi) are, with some academic institutions, the primary source of datasets for training artificial intelligence algorithms. These companies overlap in different digital markets and become active competitors in products and services in the digital world. A quick look at the origin of these giant digital behemoths shows implicitly that, in terms of language, English and Chinese are their main interests. Unfortunately, with its diversity of languages, Europe is lagging behind in developing technological products, exposing its citizens to a new linguistic cybercolonialism. 

Natural Language Processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data. The goal is a computer capable of “understanding” the contents of documents, including the contextual nuances of the language within them (Wikipedia, 2021). NLP is expected to become an essential player for improving the experience in Human-Robot Interaction (HRI). In the future, robotic assistants are expected to replace specific human labor or tasks. The success in the interaction between humans and robotic assistants is linked to the inclusion of populations not covered by products with technological limitations in language.  

A local case 
 

Finland is a small country in terms of population. Finnish is the primary language globally; only around 5.4 million Finnish-speaking natives are located mainly in the nordic areas (Kotus, 2021). Different academic institutions have made enormous efforts to develop several NLP products in the local Finnish language (Virtanen, 2019; Hämäläinen, 2021). The second official language of Finland is a regional variant of Swedish. Finland has approximately 296,000 Swedish speakers. Globally, about 9 million people speak Swedish as their first language (Kotus, 2021). Due to closeness with Sweden, the primary candidate for creating services are the tools developed using the Swedish language from Sweden (Malmsten, 2020). Although inside the Finnish Swedish community, there are identified four regions where the Finnish Swedish dialects are spoken (Ostrobothnia, the autonomous island province of Åland, Åboland, and Nyland (Uusimaa)), from these, there are ten identified dialects (Kotus, 2021a).  

Development and study of Finnish Swedish population within Human-Robot Interaction real is a necessary step for developing more inclusive products and services. For instance, a successful campaign named donate your speech was launched in 2020, supported by the Finnish Broadcasting Company (YLE), to encourage Finnish speakers to create a large dataset for training speech recognition algorithms in Finnish (Donate, 2020). Similar initiatives funded by Svenska Kulturfonden have been launched recently, including the MäRI and TaFiDiaAI initiatives led by Arcada and Experience Lab that aim specifically to study and develop products for HRI within the Finnish Swedish speaking population in a Healthcare setup. TaFiDiaAI has been the first initiative for collecting specifically Finnish Swedish dialects (see http://snacka.fi/). More recently, Yle Svenska, supported by Svenska literature, has launched a similar initiative at a significant scale for collecting speech data (Donera, 2021) 

These aforementioned initiatives are the first step for the inclusion of minorities within the Finnish society, there are a lot of challenges ahead, but digitalization and automatization are unavoidable; however, we agree that for an ethical and inclusive future, we need to take into account from the beginning, the creation of products and services that include all populations from scratch. In conjunction with the digital industries, researchers and academia must join synergies to build a more inclusive society where AI benefits all its citizens. 

Bibliography 

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). IEEE. 

Donate your speech. 2020. https://lahjoitapuhetta.fi/ 

Donera Prat, 2021. https://www.kielipankki.fi/news/the-swedish-version-of-the-donate-speech-campaign-has-started-online/ 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. 

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10), 2222-2232. 

Hämäläinen, M., Alnajjar, K., Partanen, N., & Rueter, J. (2021). Finnish Dialect Identification: The Effect of Audio and Text. arXiv preprint arXiv:2111.03800. 

Kotus — Kotimaisten kielten keskus (The Institute for the Languages of Finland), 2021. https://www.kotus.fi/en/on_language/languages_of_finland 

Kotus — Kotimaisten kielten keskus (The Institute for the Languages of Finland), 2021a. https://www.kotus.fi/en/on_language/dialects/swedish_dialects_in_finland_7542 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105. 

LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10), 1995. 

Malmsten, M., Börjeson, L., & Haffenden, C. (2020). Playing with Words at the National Library of Sweden–Making a Swedish BERT. arXiv preprint arXiv:2007.01658. 

Pew Research Center: Internet & Technology. (2019). Internet/broadband fact sheet. https://www.pewresearch.org/internet/fact-sheet/internet-broadband/ 

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., … & Hassabis, D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140-1144. 

Statista (2020). Internet usage rate worldwide in 2019, by gender and market maturity. https://www.statista.com/statistics/333871/gender-distribution-of-internet-users-worldwide/  

Virtanen, A., Kanerva, J., Ilo, R., Luoma, J., Luotolahti, J., Salakoski, T., … & Pyysalo, S. (2019). Multilingual is not enough: BERT for Finnish. arXiv preprint arXiv:1912.07076. 

Wikipedia (2021). Natural language processing. https://en.wikipedia.org/wiki/Natural_language_processing 

Yang, K., Qinami, K., Fei-Fei, L., Deng, J., & Russakovsky, O. (2020, January). Towards fairer datasets: Filtering and balancing the distribution of the people subtree in the imagenet hierarchy. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (pp. 547-558). 

Hippo-resultaten är klara

Nu är resultaten från vår studie om hur lärare och elever upplever de digitala lärmiljöerna och läromedlen som formar de digitala lärstigar som uppstått i covid-19 pandemins kölvatten klar. Du kan ta del av hela rapporten på finansiärens webbsida (på finska):

https://www.mediaalantutkimussaatio.fi/tutkimukset/tutkimushankkeet/hippo-hybridi-oppimispolku/

Här nedan hittar du rekommendationslistorna som projektet gav upphov till på svenska.

Co-creating online – what works and what doesn’t?

In March 2020, the pandemic hit and limited face to face interactions. These physical meetings were taken for granted as a basis for co-creation, and had to be re-thought almost over night. This disruption saw the birth of new ways of working together and many distance-based collaborative tools for co-creation were put to use.

It did, however, leave us all with a feeling of uncertainty about the future and the role that open social innovation can play in regional development. But never questioning the need for engaging citizens – just finding new ways of doing it.

More research based good practices are needed to overcome this uncertainty, and that is why our project is now conducting an evaluation of the open social innovation activities in the shadow of COVID-19.

The study is carried out by Experience Lab of Åbo Akademi University in Finland, together with all project partners.

  • So far, developers and innovators have tackled the changed conditions “on the run”, with varying results. As some of the new practices are likely to live on when the pandemic fades, now is the time to take a moment and reflect on our experiences – and then look forward and make use of the best pieces. In fact, the exchange of experience is at the core of developing OSI – which is what OSIRIS is about anyway, project manager Kimmo Rautanen explains.

The study has two parts – a survey among the stakeholders in all partner regions and a semi-structured deep interview with key project staff and stakeholders.

  • The interviews will be conducted over Zoom, and the survey is completely online as well – so the study is an example of virtual co-creation in itself. The main aim is to find out how the participants have experienced working together online, which is critical information when new co-creation processes are designed, says Rautanen.
  • The study will also result in a checklist for moving your co-creation activities online, a list of do’s and don’ts, project member Yvonne Backholm states.

This study will contribute to the understanding of if and how methods of open social innovation and co-creation can move online, thus getting everyone onboard in the post-pandemic recovery towards a green and digital future.