“En glad maskin” – erfarenheter av svenskspråkiga robotar i…

Välkommen att ta del av erfarenheter och reflektioner kring sociala robotar på svenska i vården tillsammans med Åbo Akademi/Experience Lab och Arcada.

Åbo Akademi/Experience Lab och Arcada har i drygt två års tid samarbetat kring projektet MäRI (Människa och Robot-Interaktion) som strävat efter att ta fram evidensbaserad kunskap kring hur vårdtagare och vårdstuderanden upplever mötet med en social, humanoid robot. Projektet finansieras av Svenska Kulturfonden.


Welcome to explore experiences and reflections on social robots in healthcare in Swedish, together with Åbo Akademi/Experience Lab and Arcada.

For over two years, Åbo Akademi/Experience Lab and Arcada have collaborated on the MäRI project (Human and Robot Interaction) which aimed to develop evidence-based knowledge on how care recipients and healthcare students perceive interactions with a social humanoid robot. The project is funded by the Svenska Kulturfonden.

Den 11.5. 2022 berättar vi om arbetet i Märi på flera sätt – på förmiddagen håller vi ett livestreamat webinarium och på eftermiddagen ges du möjlighet att fysiskt bekanta dig med robotarna och den applikation som skapats. I Vasa kan du komma till Experience Lab och i Helsingfors till Arcada.

Dagen av avgiftsfri, men kräver anmälan.

Webinarium 11.5. kl 09.30-11 på YouTube,


Introduktion till samarbetsprojektet Märi -sociala robotar som agenter i vården

Presentation av robotarna och utvecklingsprocessen för att ta fram en applikation för tandvården

  • Flossa – en robotapplikation för tandvården

Mattias Wingren, Sören Andersson, Åbo Akademi/Experience Lab

Dennis Biström, Kristoffer Kuvaja Adolfsson, Johan Penttinen, Arcada

Erfarenheter och reflektioner från projektet

  • Upplevelser av att tala med en svenskspråkig robot – Susanne Hägglund, Åbo Akademi/Experience Lab
  • Hur kan roboten hjälpa? – Christa Tigerstedt, Arcada

Forskare och företagare Linda Mannila ger en kommentar till projektet

Moderator: Yvonne Backholm-Nyberg, verksamhetschef, Åbo Akademi/Experience Lab

Workshops 11.5 kl 13-15

Åbo Akademi/Experience Lab, Strandgatan 2, 65100 Vasa

I  Experience Lab kommer deltagarna att få träffa tre robotar, – Nao, Pepper och Furhat. Deltagarna får interagera med dem och utforska olika användningsfall  i vården för alla de här tre robotarna. 

Du kan välja att delta antingen kl 13-14 eller 14-15. Antalet platser är begränsat pga utrymmets beskaffenhet.

Arcada, Robolab, Jan-Magnus Janssons plats 1, 00550 Helsingfors

På Arcada får deltagarna testa på ‘robot whispering’ i praktiken. Detta betyder att man får insikter hur dessa plattformer fungerar och vad de kan erbjuda idag.  Deltagarna kommer att interagera med tre sociala robotar:  Alf, Snow och Amy.  Deltagarna kommer även att få testa vår FLOSSA applikation.

Du kan välja att delta antingen kl 13-14 eller 14-15. Antalet platser är begränsat pga utrymmets beskaffenhet.

Hela dagen är avgiftsfri, men kräver att du anmäler dig här:


Hulis jee me tu nö? (översatt från Malaxmål: hur…

Preliminära resultat från våra studier kring humanoida sociala robotar på svenska i vården visar att det är viktigt för en del österbottningar att robotarna kan förstå dialektala uttryck och att robotarna talar finlandssvenska. Dessvärre finns varken finlandssvenskan eller dialekter med bland de språk som det satsas stort på globalt i utvecklingen av taligenkänningsalgoritmer. I projekten MäRI och TaFiDiAi jobbar vi med att inkludera finlandssvenskar i processen att ta med svenskan i automatiseringen och robotiseringen. I det här inlägget skriver vår kollega Leonardo Espinosa Leal vid Arcada att det är det enda rätta att ta med minoritetsspråken i utvecklingen av interaktiva digitala tjänster, och det redan från start.

Inclusion in Human-Robot interaction 

Artificial intelligence has become the modern paradigm in almost all areas of knowledge. Significant advances in fields like deep neural networks (Goodfellow, 2016) have created algorithms able to rival humans in areas as never before, including vision (LeCun, 1995), language (Greff, 2016), and many others. Nowadays, machines are capable the defeating the human masters on almost any board game (Silver, 2018).  

Performing tasks at the human level means that somehow humans can be replaced or repurposed in less repetitive tasks. Ignoring philosophical or sociological discussions about how this technological revolution can impact, positively or negatively, the human population in the near or far future in general, it is clear that one of the goals of these advances is the creation of fully autonomous and intelligent embodied agents. 

The advances in robotics made by companies such as Boston Dynamics or SoftBank Robotics seem to bring the ancient dreams of creating artificial humanoids into reality. The secret source of these humanoid machines’ success is, apart from the advances in models, hardware, or software, done by highly skilled technical and theoretical experts, the endless homunculus amount of data generated by simple digital users.  

Yes, you muggle! In most cases, the human’s digital footprint has been responsible for creating and tagging data (sometimes on purpose, in others as a side subproduct of our web surfing). Data that have helped train these human-level deep learning algorithms. And here is where the problem arises. Powerful tech companies have expanded their services and products created with inherited inequalities within that data.  

The digital gap among different societies has allowed the creation of biased datasets. Modern estimations argue that more than half the global population has access to the internet; however, studies have shown that digital skills and access vary by region and gender. For instance, a 2019 study showed that 55% of men used the internet in the USA while only 48% of women did so. Moreover, only 44% of the population in the developing world and 20% of the people in the least developed world currently have internet access, in contrast to developed regions where over 85% of people have access. Similar inequalities can be found in other areas, such as age group, education level, and socioeconomic demographic information (Statista, 2019; Pew 2019).  

The landmark moment in the history of deep learning is the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) of 2012, won by Alex Krizhevsky (Krizhevsky, 2012). Here, GPU-powered Neural Networks enter the research sphere. ImageNet was an international contest where several research groups competed by bringing their best computer vision algorithms trying to reach the lowest classification error. ImageNet consists of 14,197,122 images organized into 21,841 subcategories. This dataset was compiled by Fei-Fei Li’s group at Stanford (Deng, 2009). This huge dataset has been the reference and the ground truth for new computer vision developments; however, it has been acknowledged recently that it contains flows and biases (Yang, 2020).  

Other specific fields use a limited number of standard datasets, for instance, in Indoor Scene Recognition (MIT Indoor Scenes or Stanford 3D Indoor Scene Dataset); Face recognition (WIDER Face or IMDb-Face); Autonomous driving (Waymo Open Dataset or Virtual KITTI ). A quick inspection will tell us how western-urban-male-centric biased are these datasets. I encourage the reader to check the site, just filter by language to see how English is the dominant language by far, compared to the second in the list. 

It is acknowledged that big tech players: GAMMAs (Google, Amazon, Meta (Facebook), Microsoft, Apple) or BATXs (Baidu, Alibaba, Tencent, and Xiaomi) are, with some academic institutions, the primary source of datasets for training artificial intelligence algorithms. These companies overlap in different digital markets and become active competitors in products and services in the digital world. A quick look at the origin of these giant digital behemoths shows implicitly that, in terms of language, English and Chinese are their main interests. Unfortunately, with its diversity of languages, Europe is lagging behind in developing technological products, exposing its citizens to a new linguistic cybercolonialism. 

Natural Language Processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data. The goal is a computer capable of “understanding” the contents of documents, including the contextual nuances of the language within them (Wikipedia, 2021). NLP is expected to become an essential player for improving the experience in Human-Robot Interaction (HRI). In the future, robotic assistants are expected to replace specific human labor or tasks. The success in the interaction between humans and robotic assistants is linked to the inclusion of populations not covered by products with technological limitations in language.  

A local case 

Finland is a small country in terms of population. Finnish is the primary language globally; only around 5.4 million Finnish-speaking natives are located mainly in the nordic areas (Kotus, 2021). Different academic institutions have made enormous efforts to develop several NLP products in the local Finnish language (Virtanen, 2019; Hämäläinen, 2021). The second official language of Finland is a regional variant of Swedish. Finland has approximately 296,000 Swedish speakers. Globally, about 9 million people speak Swedish as their first language (Kotus, 2021). Due to closeness with Sweden, the primary candidate for creating services are the tools developed using the Swedish language from Sweden (Malmsten, 2020). Although inside the Finnish Swedish community, there are identified four regions where the Finnish Swedish dialects are spoken (Ostrobothnia, the autonomous island province of Åland, Åboland, and Nyland (Uusimaa)), from these, there are ten identified dialects (Kotus, 2021a).  

Development and study of Finnish Swedish population within Human-Robot Interaction real is a necessary step for developing more inclusive products and services. For instance, a successful campaign named donate your speech was launched in 2020, supported by the Finnish Broadcasting Company (YLE), to encourage Finnish speakers to create a large dataset for training speech recognition algorithms in Finnish (Donate, 2020). Similar initiatives funded by Svenska Kulturfonden have been launched recently, including the MäRI and TaFiDiaAI initiatives led by Arcada and Experience Lab that aim specifically to study and develop products for HRI within the Finnish Swedish speaking population in a Healthcare setup. TaFiDiaAI has been the first initiative for collecting specifically Finnish Swedish dialects (see More recently, Yle Svenska, supported by Svenska literature, has launched a similar initiative at a significant scale for collecting speech data (Donera, 2021) 

These aforementioned initiatives are the first step for the inclusion of minorities within the Finnish society, there are a lot of challenges ahead, but digitalization and automatization are unavoidable; however, we agree that for an ethical and inclusive future, we need to take into account from the beginning, the creation of products and services that include all populations from scratch. In conjunction with the digital industries, researchers and academia must join synergies to build a more inclusive society where AI benefits all its citizens. 


Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). IEEE. 

Donate your speech. 2020. 

Donera Prat, 2021. 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. 

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10), 2222-2232. 

Hämäläinen, M., Alnajjar, K., Partanen, N., & Rueter, J. (2021). Finnish Dialect Identification: The Effect of Audio and Text. arXiv preprint arXiv:2111.03800. 

Kotus — Kotimaisten kielten keskus (The Institute for the Languages of Finland), 2021. 

Kotus — Kotimaisten kielten keskus (The Institute for the Languages of Finland), 2021a. 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105. 

LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10), 1995. 

Malmsten, M., Börjeson, L., & Haffenden, C. (2020). Playing with Words at the National Library of Sweden–Making a Swedish BERT. arXiv preprint arXiv:2007.01658. 

Pew Research Center: Internet & Technology. (2019). Internet/broadband fact sheet. 

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., … & Hassabis, D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140-1144. 

Statista (2020). Internet usage rate worldwide in 2019, by gender and market maturity.  

Virtanen, A., Kanerva, J., Ilo, R., Luoma, J., Luotolahti, J., Salakoski, T., … & Pyysalo, S. (2019). Multilingual is not enough: BERT for Finnish. arXiv preprint arXiv:1912.07076. 

Wikipedia (2021). Natural language processing. 

Yang, K., Qinami, K., Fei-Fei, L., Deng, J., & Russakovsky, O. (2020, January). Towards fairer datasets: Filtering and balancing the distribution of the people subtree in the imagenet hierarchy. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (pp. 547-558). 


Vasa RoboCare

Experience Lab och Vasa RoboCare

Projektet utvecklar kunskap om hur humanoida sociala robotar kan bidra till framtidens hälsovård i Österbotten, samt förbereder befolkningen på allt mer digitaliserade hälsotjänster där robotar kan komma att vara en realitet.

Syftet är att designa och testa användning av humanoida sociala robotar i vården, mäta patienters och vårdares upplevelser av tillit och omsorg i ett vårdmöte med en social robot samt att utveckla ett användarcentrerat träningsprogram som leds av en humanoid robot som kan stöda den äldre välbefinnande.

Forskningen bidrar till välmående hos österbottningar, personal liksom patienter, i en allt mer högteknologisk vård. 

Projektet är finansierat av Högskolestiftelsen i Österbotten och leds av docent Linda Nyholm vid enheten för vårdvetenskap. 



Artisan – Artificiell intelligens i skolan

Det övergripande syftet med projektet är att öka kunskapen om och förståelsen av hur artificiell intelligens (AI) kan användas inom matematikundervisning och lärande. Ett krav för att ett verktyg ska kunna kallas AI-baserat är att det är anpassningsbart eller adaptivt.

Några exempel på AI-verktyg för skolbruk är adaptiva läromedel som erbjuder anpassat innehåll, dialogbaserade intelligenta tutorer som ger automatisk feedback i form av t.ex. stöttning och beröm, verktyg för automatisk bedömning samt sociala robotar som kan programmeras, förses med mjukvara, och fungera både som lärare och elev.

Projektet kartlägger olika AI-baserade verktyg för lärande i matematik och studerar även hur lärare ser på värdet hos olika digitala resurser och hur de förhåller sig till möjligheterna och riskerna med verktyg som baserar sig på AI.

Projektet bygger också vidare på den erfarenhet som Experience Lab har kring elev-robot interaktion och utvärderar hur en social robot kan ge mervärde i matematikklassrummet.


Bothnia Learning Hub

Bothnia Learning Hub utnyttjar digitaliseringens möjligheter. Projektet vidareutvecklar och sprider god praxis av digitala lärandemiljöer och experimenterar med nya teknologier och arbetssätt. I fokus är lärarutbildningen vid Åbo Akademi och lärare på fältet. Detta sker genom ett utvecklingsarbete i form av en medskapande process på tre nivåer som leder till ett kunskapslyft hos alla aktörer.

Projektet är ett av regeringen Sipiläs spetsprojekt för att utveckla lärarutbildningen.